Output structure in standard MCTDHX computations

For the case that atoms without internal structure are treated (Multi_Level = .F.), the column structure of the ASCII output files is described in the following tables 11,12,13,14,15.

Table 11: NO_PR.out file structure.
Column $ 1$ Column $ 2$ to $ (1+M)$ Column $ 2+M$
Time $ t$ Natural orbital occupations $ \rho^{(NO)}_M(t)$ to $ \rho^{(NO)}_1(t)$ Energy $ E(t)$
This table explains the column structure of the NO_PR.out file. $ M$ stands for the number of orbitals in the computation.



Table 12: Structure of the Error.dat file.
Column $ 1$ Column $ 2$ Column $ 3$ Column $ 4$ Column $ 5$ Column $ 6$ Column $ 7$ Column $ 8$
N$ ^o$ of integration step Time $ t$ $ E_{orb}(t)$ $ E_{orb,rel}(t)$ $ E_{CI}(t)$ $ E_{CI,rel}(t)$ $ E_{tot}(t)$ $ E_{V_t}(t)$
This table explains what is saved in the different columns of the Error.dat file. $ E_{orb}(t)$ and $ E_{orb,rel}(t)$ are the absolute and relative integration errors from the orbitals' equations of motion, respectively. $ E_{CI}(t)$ and $ E_{CI,rel}(t)$ are the integration errors from the coefficients' equations of motion, respectively. $ E_{tot}(t)=E_{orb}(t) + E_{CI}(t)$ is the sum of the orbital and coefficients integration errors and $ E_{V_t}(t)$ it an (experimental) error measure for the error due to a time-dependency of the external one-body potential.



Table 13: Timing.dat file structure.
Column $ 1$ Column $ 2$ Column $ 3$ Column $ 4$ Column $ 5$ Column $ 6$ Column $ 7$ Column $ 8$
N$ ^o$ of integration step Time $ t$ Execution time $ T_{step}$ $ T_{CI}$ $ T_{\rho }$ $ T_{CI,Func}$ $ T_{Orb}$
this table displays the column structure of the Timing.dat output file. Here,$ T_{step}$ is the execution time for the present integration step, $ T_{CI}=T_{\rho }+T_{CI,Func}$ is the overall execution time in this step spent on the configuration interaction, i.e., the coefficients part of the program. $ T_{\rho }$ is the runtime consumed to invert the matrix elements of the reduced one-body density, $ T_{CI,Func}$ is the execution time consumed in applying the Hamiltonian to the coeffcients vector. $ T_{Orb}$, finally, is the execution time spent for evaluating the right hand side of the orbitals' equations.



Table 14: <time>orbs.dat file structure.
Column $ 1$ to $ 3$ Column $ 4$ Column $ 5$ Column $ 6$ & $ 7$ Column $ 8$ & $ 9$ Column $ 10$ & $ 11$ to $ (10+2M)$ & $ (11+2M)$
$ x,y,z$ DVR weight $ V(x,y,z,t)$ $ \rho _w(x,y,z;t)$ $ \rho _{(NO)}(x,y,z;t)$ $ \phi _1(x,y,z;t)$ to $ \phi _M(x,y,z;t)$
Column $ (11+2M+1)$ & $ (11+2M+2)$ to $ (11+4M+1)$ & $ (11+4M+2)$
$ \phi ^{(NO)}_M(x,y,z;t)$ to $ \phi ^{(NO)}_1(x,y,z;t)$
This table explains the column structure of the <time>orbs.dat output files of the main or analysis program. $ x,y,z$ are the spatial coordinates, $ V(x,y,z,t)$ is the one-body potential, $ \rho _w(x,y,z;t)$ is the density in working orbitals, $ \rho _{(NO)}(x,y,z;t)$ is the density in natural orbitals, $ \phi _1(x,y,z;t)$ to $ \phi _M(x,y,z;t)$ are the working orbitals, and $ \phi ^{(NO)}_M(x,y,z;t)$ to $ \phi ^{(NO)}_1(x,y,z;t)$ are the natural orbitals. Please note, that some of the quantities are complex numbers which then are output decomposed in their real and imaginary parts in two columns (as specified by the column numbers).



Table 15: Structure of the <time>coef.dat files
Column $ 1$ Column $ 2$ & Column $ 3$
N$ ^o$ of Coefficient Real and imaginary part of the coefficient


Back to http://ultracold.org