Predefined one-body potentials

Table 20: Predefined potentials and parameters.
whichpot Description Potential Parameters
HO1D $ 1$D harmonic oscillator $ V(x)=\frac12 p_1^2 x^2$ $ p_1\equiv$trap frequency.
HO2D $ 2$D harmonic oscillator $ V(x,y)=$
$ \frac12 (p_1^2 x^2 + p_2^2 y^2)$
$ p_{1/2}\equiv$trap frequency in $ x/y$
HO3D $ 3$D harmonic oscillator $ V(x,y,z)=$
$ \frac12 (p_1^2 x^2 + p_2^2 y^2 + p_3^2 x^2)$
$ p_{1/2/3}\equiv$trap frequency in $ x/y/z$
h+d $ 1$D harmonic oscillator plus Gaussian central barrier $ V(x)= \frac12 (x-p_1)^2$ $ + p_2 exp(- \frac{(x-p_1)^2}{2 p_3^2})$ $ p_1\equiv$ diplacement, $ p_2\equiv$ height of Gaussian, $ p_3\equiv$ width of Gaussian
h2D+d $ 2$D harmonic oscillator plus Gaussian central barrier $ V(x)= \frac12 (p_1^2 x^2+p_2^2 y^2)$ $ + p_3 exp(- (\frac{(x)^2}{2 p_4^2}+\frac{(y)^2}{2 p_5^2}))$ $ p_{1/2}\equiv$ trap frequency in $ x$-/$ y$-direction, $ p_3\equiv$ height of Gaussian, $ p_{4/5}\equiv$ width of Gaussian in direction $ x$/$ y$
HO<X>D+td_gauss <X>D harmonic oscillator plus time-dependent [height $ A(t)$] Gaussian central barrier in $ x$-direction $ V(x)= \frac12 p_1^2 ( (x-p_2)^2 + y^2)$ $ + A(t) exp(- \frac{(x-p_5)^2}{2 p_6^2})$ $ p_{1}\equiv$ trap frequency in $ x$- and $ y$-direction, $ p_2\equiv$ displacement of the minimum of the trap w.r.t. the barrier, $ p_5\equiv$ displacement of Gaussian w.r.t. $ x=0$, $ p_{6}\equiv$ width of Gaussian barrier in direction $ x$. Height $ A(t)= \begin{cases}
\frac{t p_3}{p_4} & t\leq p_4 \\
p_3 & t > p_4
\end{cases}$
Tilt Tilted triple well potential $ V(x)=-p_1 x + p_2 \sin(2 x)^4 + (x/2.2)^{20}$ $ p_1\equiv$ tilt parameter, $ p_2\equiv$ depth of the wells.
Tiltinit single well potential to initialize system for a propagation in the tilted triple well potential Tilt. $ V(x) = V(x)=-p_1 x + p_2 \sin(2 x)^4 + [(x-\frac{p_3 \pi}{2})/0.7]^{20}$ $ p_1\equiv$ tilt parameter, $ p_2\equiv$ depth of the wells, $ p_3$ is used to select displacement from the origin.
OL_HW_1D lattice in one dimension with hard wall boundaries $ V(x)= \begin{cases}
p_1\sin(p_2 x)^2 & p_3 < x < p_4 \\
1000 & \text{else}
\end{cases}$ $ p_1\equiv$ depth of lattice, $ p_2\equiv$ frequency of lattice, $ p_3,p_4$ are the boundaries for the hard walls.
TDHIM Harmonic potential with time-dependent frequency for benchmarks with the time-dependent harmonic interaction Hamiltonian. $ V(x)=\frac{1}{2}(1+\sin(t) \cos(2t)$ $ \sin(\frac{1}{2}t) \sin(0.4t)) x^2$ No parameters, use with which_interaction ='TDHIM'
tun Potential for tunneling to open space dynamics $ V(x) = \begin{cases}
\frac{1}{2} x^2 & x\leq2 \\
2.2662969  exp(-2 (x-2.25)^2) & x > 2
\end{cases}$ no parameters, initial wavefunction should be localized at $ x=0$, use whichpot='ini' for relaxation of initial state.
thr Tunneling to open space with a threshold $ V(x)=\begin{cases}
\frac{1}{2}x^2 & x \leq 2 \\
Ax^3+Bx^2 +Cx+D & 2 < x \leq 4 \\
p_1 & x > 4
\end{cases}$ Parameter $ p_1$ defines the threshold and the polynomial coefficients $ A=1-\frac{1}{4} p_1$, $ B=2.25 p_1 - 9.5$, $ C=28-6p_1$, $ D=5T-24$.
DQD Double quantum dot potential $ V(x) = -p_1 exp(-p_2(x+\frac{1}{2}p_3)^2) - p_4 exp(-p_5(x-\frac{1}{2}p_3))$ $ p_1\equiv$ depth of first quantum dot, $ p_2\equiv$ width of first quantum dot, $ p_3\equiv$ distance of the two dots, $ p_4\equiv$ depth of second quantum dot, $ p_5\equiv$ width of second quantum dot.
DQDLASER Double quantum dot potential illuminated by a laser with time-dependent amplitude $ V_{\text{las}}(x,t)$. $ V(x)=-p_1 exp(-p_2(x+\frac{1}{2}p_3)^2) - p_4 exp(-p_5(x-\frac{1}{2}p_3))+V_{\text{las}}(x,t) exp(-p_9 (x-p_{10})^2)$ $ p_{1-5}\equiv$ same as in DQD, $ V_{\text{las}}(x,t)= p_7 \cos(p_8 t) \sin(\pi \frac{t}{p_6}) x $ for $ t\leq p_6$ and $ V_{\text{las}}(x,t)=0$ else.
zero No potential $ V=0$ No parameters. Boundary conditions determined by the discrete variable representation.
MQT_ini Rectangular $ 1$D box $ V(x)=\infty \qquad \forall [x\notin (0,20-p_1)]$ and $ V(x)=0 \qquad \forall [x\in )0,20-p_1(]$ $ p_1\equiv$ barrier width in propagation MQT_prop
MQT_prop Rectangular $ 1$D box, barrier and open space $ V(x)=\infty \qquad \forall [x < 0]$ and $ V(x)=0 \qquad \forall [x\in )0,20-p_1(]$ and $ V(x)=0 \qquad \forall [x>20]$ and $ V(x)=0.05 \forall [x\in (20-p_1,20)]$ $ p_1\equiv$ barrier width
qpl $ 1$D lattice with $ 2$ frequencies/amplitudes $ V(x)=p_1 \cos(p_2 x) + p_3 \cos(p_4 x)$ $ p_{1/3}\equiv$ amplitudes of the lattices, $ p_{2/4}\equiv$ frequencies of the lattices.
rot2D $ 2$D harmonic oscillator with rotating anisotropy $ V(x,t)=\frac12 ((1+p_a(t))(x \cos(p_1 t) + y\sin(p_1 t))^2 + (1-p_a(t))(y \cos(p_1 t) - x \sin(p_1 t)))$ $ p_1\equiv$ the rotation frequency, $ p_a\equiv$ the time-dependent anisotropy. $ p_2\equiv$ anisotropy maximum, $ p_3\equiv$ ramp-up and ramp-down time of the anisotropy, $ p_4\equiv$ plateau time at which $ p_a=p_2$.
stir2D $ 2$D harmonic trap with rotating stirring rod $ V(x,t) = \linebreak\frac{1}{2} (x^2 + y^2)+ \linebreak p_3 exp[ \linebreak -\frac{1}{p_4}(x-p_2\cos(p_1 t))^2 + (y - p_2\sin(p_1 t))^2]$ $ p_1\equiv$ stirring frequency, $ p_2\equiv$ stirring radius, $ p_3\equiv$ height of Gaussian rod, $ p_4\equiv$ width of Gaussian rod.
ellipse2D Elliptic two-dimensional hard-walled potential well $ V(x)=\begin{cases}
1000 & \sqrt{(\frac{x}{p_1})^2+(\frac{y}{p_2})^2} > p_3 \\
0 & \text{else}
\end{cases}$ $ p_{1/2/3}\equiv$ parameters defining the ellipse.
     

Back to http://ultracold.org