Predefined interaction potentials


Table 21: Predefined time-independent and time-dependent interaction potentials.
Which_Interaction and Interaction_Type Description Potential
'gauss' and $ 1,2,3,4$ Gaussian interparticle interaction of width Interaction_Width$ =\sigma$ $ W(\vec{r},\vec{r}')= \lambda_0 \frac{1}{(\sqrt{2\pi \sigma^2})^D} exp\left(- \frac{\vert \vec{r}-\vec{r} \vert^2}{2 \sigma^2} \right)$
0 Contact interaction with constant strength $ \lambda_0$ $ W(\vec{r},\vec{r}')= \lambda_0 \delta(\vec{r}-\vec{r}')$
'cos' and $ 6$ Contact interaction with time-dependent strength $ \lambda(t)$ $ W(\vec{r},\vec{r}')= \lambda_0 \cos (I_1 t) \delta(\vec{r}-\vec{r}')$
'sin' and $ 6$ Contact interaction with time-dependent strength $ \lambda(t)$ $ W(\vec{r},\vec{r}')= \lambda_0 \sin (I_1 t) \delta(\vec{r}-\vec{r}')$
'TDHIM' and $ 5$ Time-dependent version of the harmonic interaction model $ W(\vec{r},\vec{r}')= \lambda_0 (1+0.4 \sin^2(t)) (\vec{r}-\vec{r}')^2$
'TDgauss1' and $ 5$ Gaussian interaction with width Interaction_Width$ =\sigma$ and time-dependent amplitude $ W(\vec{r},\vec{r}')= (\lambda_0 + I_1 \sin(I_2 t) ) \frac{1}{(\sqrt{2\pi \sigma^2})^D} exp\left(- \frac{\vert \vec{r}-\vec{r} \vert^2}{2 \sigma^2} \right)$
'TDgauss2' and $ 5$ Gaussian interaction with width Interaction_Width$ =\sigma$ at $ t=0$ that is time-dependently modulated $ W(\vec{r},\vec{r}')= \lambda_0 \frac{1}{(\sqrt{2\pi (\sigma^2+ I_1 \sin(I_2 t))})^D}$ $ exp\left(- \frac{\vert \vec{r}-\vec{r} \vert^2}{2 (\sigma^2}+ I_1 \sin(I_2 t)) \right)$
'lennart_j' and $ 4$ $ I_2$- Screened Lennart-Jones potential $ W(\vec{r},\vec{r}') = I_1 \left( \frac{\sigma}{\vert \vec{r}-\vec{r} \vert^12} - \frac{\sigma}{\vert \vec{r}-\vec{r} \vert^6} \right)$ for $ \vert \vec{r}-\vec{r} \vert>I_2$ and $ W(\vec{r},\vec{r}') = I_1 \left( \frac{\sigma}{I_2^12} - \frac{\sigma}{I_2^6} \right)$ for $ \vert \vec{r}-\vec{r} \vert\leq I_2$
'HIM' and $ 4$ Harmonic interaction model $ W(\vec{r},\vec{r}')= \lambda_0 (\vec{r}-\vec{r}')^2$
$ I_X$ stands for Interaction_ParameterX from the input, $ \sigma $ for Interaction_Width, and $ D$ for the dimensionality of the problem.


Back to http://ultracold.org